Name:_____ Section:

Electricity the Mysterious Force:

- Atoms: Smallest unit of matter
 - o Protons: Found ______ the nucleus (the
 - _____ of an atom) Have a ______ electrical charge
 - Electrons: ______ around at great ______ from the nucleus
 - Have a ______ electrical charge

• Please draw and label a sketch of the second Carbon Atom.

- _____: a force within the particles of an atom.
- Opposite charges ______ each other
- Electrons usually remain in a relatively ______ distance
 - from the nucleus in regions calls ______. o Each level can hold a certain amount of ______. The closest level can hold ______ electrons. The most electrons an energy level can hold is _____.
- The electrons in the levels closest to the nucleus have a ______ force of ______ to the protons. The electrons in the _____ level do not.
- Applying a _____ can make electrons move from one atom to another.
- _____ is moving electrons.

Name:	
Section	:

Magnets:

- _____: objects that are made of molecules that have north and south-seeking poles.
- Each ______ that makes up a magnet are tiny magnets.
- Because most of the north-seeking poles point in one direction and most of the south-seeking poles point in the other direction, a

_____ is created around the magnet.

- A magnet has a ______ (N) pole and a ______ (S) pole.
- Magnetic force flows from the ______to the
- Please sketch the diagram of the **bar magnet** (it shows what a magnetic field looks like)

• _____ repel each other (please draw this diagram.)

• ______ attract each other (please draw this diagram)

Name:	
Section:	

Magnets Can Produce Electricity:

Α	_ can move electrons.
	_ like copper have electrons that are easily
pushed from their	, creating electricity.
	_: electricity and magnetism are related
because magnets can create	electricity and electricity can create a
magnetic field.	
Power plants use	to make electricity.
is used to s	pin a turbine
 To create the spin we c 	an burn or
to	o make steam (Fossil Fuel)
 We can also split 	to heat water
into steam. (Nuclear Po	ower)
0	from a dam (Hydropower) or the
energy from	can also spin a turbine.
The turbine is attached to a	in a generator.
Α	has magnets and coils of copper wire in it.
The turbine can either spin t	ne inside the coils or spin
the in	side the magnet to create a magnetic field,
which and	d the electrons in the
copper wire.	

• Please draw and label the diagram of the turbine generator.

Name:	
Section:	

• The moving electrons then flow into ______ which bring electricity to our homes.

Batteries Produce Electricity:

- Battery:
- A ______between the metals frees electrons in one of the metals. These electrons can move along wires (electricity!)

- What is a load?:
- An example of a load is ______.

Electricity Travels in Circuits:

- What is a circuit?
- Electricity must have a _____ path before electrons can move.

- When we flip on a light switch we ______ the circuit, allowing electricity to flow.
- When we flip a switch off we ______ the circuit, no electricity can flow.
- Sketch and label the closed and open circuit diagrams:

Name:______Section:

Secondary Energy Source

- Electricity is a ______ of energy.
- A secondary source of energy means that we must use ______ to make it.
- Electricity cannot be classified as ______ or
- Coal is an example of a ______ energy source.
- Hydropower is an example of a ______ energy source.
- Non-renewable resources cannot be re-used, once we burn coal, we can't get it back. A renewable resource can continue to be used, like running water. Due to the water cycle (rain), the water is constantly renewed so we can use it again.

Generating Electricity

- Power plants use many ______ to produce electricity.
- _____ power plants use coal, biomass, petroleum, or natural gas to ______ water into steam.
- Nuclear power plants use ______ to produce heat to create steam.
- _____ power plants use heat from the earth to create steam.
- _____ use the kinetic energy in wind to generate electricity.
- _____ plants use the energy in moving water.
- WHATEVER TYPE OF POWER PLANT IS USED, THE ENERGY MADE IS USED TO SPIN A TURBINE TO CREATE ELECTRICTY!

Moving Electricity

- The path of electricity:
 - 1. Electricity is generated by a _____

Science 7: Ms. Ikari	Electromagnetism Unit	Name: Section:	
	2. Travels through wire to a _		_, which
		_ the voltage (this is so less e	electricity is
	lost)		
	3. It is then sent to a network	c of	
	4. Then to	that have step-dow	n
	transformers that reduce t	he voltage from 350000 volt	is to
		volts.	
	5. Finally to	lines that deliver the	ne electricity
	to your home.		
• Be	fore the electricity can be use	d in your home, it is reduced	d again by a
tra	ansformer to	volts.	
• Ple	ease draw and label the Transp	porting Electricity diagram:	

Fuels that Make Electricity:

- Fossil Fuel Power Plants
 - o Burn ______, or
 - These are called ______ fuels because they were formed from the remains of ancient sea plants and animals.

 - o Fossil fuels are used create ______.
 o The steam is used to ______ turbine generators.

Name:	
Section:	

 are produced that can pollute the air and contribute to climate change.

- Fossil fuel plants are also called ______
 because they use heat to make electricity.
- Nuclear Power Plants
 - Also a type of ______ power plant
 - o The fuel used is _____, which isn't burned.
 - A nuclear power plant ______ the nuclei of uranium atoms to make smaller atoms in a process called
 - This produces ______ which is used to turn water into steam.
 - Nuclear power plants produce ______.

_____•

• Nuclear waste must be stored carefully to prevent

• <u>Hydropower Plants</u>

- Use the energy of ______.
- Hydropower is a renewable energy source because it is renewed by ______.

What is a Watt?

- Watt is a measure of ______ an appliance uses.
- A kilowatt is ______ watts.
- _____ measures the amount of electricity used in one hour.
- A kilowatt is the ______ of electric flow.
- A kilowatt-hour is the ______ of electricity.

Name:	
Section:_	

Cost of Electricity:

- Cost of electricity depends on:
 - 1. _____ cost: Hydropower is the ______.
 - _____ power is the most expensive.
 - _____ cost: A power plant may be expensive to build but the low cost of the fuel can make it ______. (Coal plants are cheap to build but their fuel is expensive. Nuclear plants are costly to build but their fuel is cheap).
 - 3. _____: the amount of useful energy you get out of a system. Changing one form of energy into another always involves a loss of _____.
- Most power plants use ______ units of fuel to produce one unit of electricity.
- Most of the energy loss is ______.
- Most power plants are _____% efficient. For every 100 units of energy that go in, ______ units are lost. Only 35 units of energy are produced to do ______.
- Please draw and label the "Efficiency of a Power Plant" diagram.